a2zpapers.com

Exam. Code : 103205
 Subject Code : 1202

B.A./B.Sc. 5 $^{\text {th }}$ Semester MATHEMATICS
 Paper-I
 (Dynamics)

Time Allowed-3 Hours]

[Maximum Marks-50
Note :- Attempt any five questions in all choosing at least two from each section. All questions carry equal marks.

SECTION-A

1. A particle moving with uniform acceleration in a straight line passes points A, B and C . If $\mathrm{AB}=\mathrm{BC}=\mathrm{b}$ and if time from A to B is t_{1}, B to C is t_{2}, prove that the acceleration is $\frac{2 b\left(t_{1}-t_{2}\right)}{t_{1} t_{2}\left(t_{1}+t_{2}\right)}$.
2. A ball is dropped from the top of a tower h meters high and at the same moment another ball is projected upwards from the bottom. They meet when the upper one has described $\frac{1}{\mathrm{k}}$ th of the total distance. Show that their speeds when they meet are in the ratio $2:(\mathrm{k}-2)$ and that the initial velocity of the lower ball is $\frac{1}{2} \sqrt{\mathrm{kgh}}$.

271(2118)/DAG-6533
1
(Contd.)
3. A mass m_{1} hanging vertically is connected to another mass m_{2} placed on a smooth inclined plane of inclination α by means of a light inelastic string passing over a smooth pulley fixed at the top of the plane. The system is released from rest, discuss the motion and find the pressure on the pulley. 10
4. A particie, moving in a straight line is subjected to a retardation of kv^{n} per unit mass, where v is the speed at time t . Show that if, $\mathrm{n}<1$, the particle will come to rest at a distance $\frac{u^{2-n}}{k(2-n)}$ from the point of projection at time $\mathrm{t}=\frac{\mathrm{u}^{1-\mathrm{n}}}{\mathrm{k}(1-\mathrm{n})}$, where u is initial speed. What happens when :
(i) $1<\mathrm{n}<2$
(ii) $\mathrm{n}>2$
5. (a) Define SHM. Prove that simple harmonic motion is periodic and its period is independent of the amplitude.
(b) A particle is moving between two points A and B in SHM. If the period of oscillation is 2π, show that the velocity at any point P is mean proportional between AP and BP. 5,5

271(2118)/DAG-6533
2
(Contd.)
a2zpapers.com

SECTION-B

6. A particle of mass m is projected from a fixed point with velocity u in a direction making an angle $\alpha\left(\neq \frac{\pi}{2}\right)$ with the horizontal. Neglecting the air resistance, find its motion and show that its path is a parabola. 10
7. A particle is projected along the inner surface of a smooth vertical circle of radius r, its velocity at the lowest point being $\frac{1}{5} \sqrt{95 \mathrm{rg}}$. Show that it will leave the circie at angular distance $\cos ^{-1}\left(\frac{3}{5}\right)$ from the highest point and its velocity then is $\frac{1}{5} \sqrt{15 \mathrm{rg}}$.
8. Define areal velocity. Prove that with usual notations, the area velocity of a particle moving along a plane curve is $\frac{1}{2} \mathrm{vp}$.
9. (a) Define work and power. Discuss F.P.S. and M.K.S. system of units of work and power.
(b) A particle of mass m falls from rest at a height h above the ground. Show that throughout the motion, the sum of kinetic and potential energies is constant.
10. A seconds pendulum was too long on a given day by a quantity a, it was then over corrected so as to become too short by a during the next day. Prove that if l is the correct length, then the number of minutes gained in two days are $1080 \frac{\mathrm{a}^{2}}{l^{2}}$ nearly.
271(2118)/DAG-6533
3
5400
